据论文介绍:
我们设计的机器人具有可重现、可选择和精确连接的优势。
上图 A 展示的是两个神经簇之间的神经网络主动构建,这一过程中主要依赖的是内置于机器人的一片高密度多级阵列芯片,这种芯片可以测量到轴突信号传输。
上图 B 主要展示了微型机器人的具体尺寸——高 27μm、宽 5μm、深 2μm。
可以看到,机器人顶部有一个凹槽,侧面还有翻转指示。
C 部分展示了利用基于双光子聚合(TPP)的三维激光光刻技术和沉积镍(Ni,用于磁性)层、二氧化钛(TiO2,用于生物相容性)层制备机器人的过程。
D 部分则是机器人的扫描电子显微镜图像,可见这种机器人是微米级大小的。
机器人培养神经元
机器人设计好了,下一步就要开始尝试培养神经元了。
实验中:
实验组是:机器人凹槽上小鼠颅脑神经细胞的神经突增长;
对照组是:玻璃基质(也就是平面)上小鼠颅脑神经细胞的神经突增长。
科学家们利用免疫荧光图像展示了两组的神经元凸起数量变化。
结果显示:
实验组(机器人):细胞高度约 40μm;
对照组(玻璃基质):只观察到少量细胞。神经突厚度约为 2-5μm,神经元胞体厚度约为 10-20μm。
也就是说,与对照组相比,利用机器人可以成功培养出神经元,在对存活率没有显著影响的情况下神经突也得以增长。
研究团队表示:
微型机器人具有在 2 周内运输、培养神经元以及以所需方向引导、连接神经突生长的潜力。
体外神经网络新突破
在神经元培养的基础上,这款微型机器人打造了神经网络,而这一过程是通过在神经簇阵列上对机器人施加磁场影响实现的。
科学家们的设计是,通过 8 个电磁线圈半球的线性叠加及其顶部的一个电荷耦合装置( CCD)相机产生强度为 20 mT 和 1.2 Hz 的磁场。
下图中,白色虚线框表示神经网络,红色虚线框表示机器人的目标点。
实际上,要想实现神经网络主动连接,一个关键就是将培养在机器人上的神经元精确地传递和定位到指定位置。虽然附着在机器人上的细胞增加了额外重量,可能会影响机器人的前进,但科学家们借助磁场实现了精确控制——精度在几十 μm 级别(误差范围约 10%)。
如上图所示,神经元在 10 秒内到达了目标位置,并在 1 分钟内精确对齐了连接网络所需的神经簇。